The Complexity of Mean-Payoff Automaton Expression

نویسنده

  • Yaron Velner
چکیده

Quantitative languages are extension of Boolean languages that assign to each word a real number. With quantitative languages, systems and specifications can be formalized more accurately. For example, a system may use a varying amount of some resource (e.g., memory consumption, or power consumption) depending on its behavior, and a specification may assign a maximal amount of available resource to each behavior, or fix the long-run average available use of the resource. Mean-payoff automata are finite automata with numerical weights on transitions that assign to each infinite path the long-run average of the transition weights. Mean-payoff automata forms a class of quantitative languages that is not robust, since it is not closed under the basic algebraic operations: min, max, sum and numerical complement. The class of mean-payoff automaton expressions, recently introduced by Chatterjee et al., is currently the only known class of quantitative languages that is robust, expressive and decidable. This class is defined as the closure of mean-payoff automata under the basic algebraic operations. In this work, we prove that all the classical decision problems for mean-payoff expressions are PSPACE-complete. Our proof improves the previously known 4EXPTIME upper bound. In addition, our proof is significantly simpler, and fully accessible to the automata-theoretic community.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mean-Payoff Automaton Expressions

Quantitative languages are an extension of boolean languages that assign to each word a real number. Mean-payoff automata are finite automata with numerical weights on transitions that assign to each infinite path the long-run average of the transition weights. When the mode of branching of the automaton is deterministic, nondeterministic, or alternating, the corresponding class of quantitative...

متن کامل

Quantitative Fair Simulation Gamest

Simulation is an attractive alternative for language inclusion for automata as it is an under-approximation of language inclusion, but usually has much lower complexity. For non-deterministic automata, while language inclusion is PSPACE-complete, simulation can be computed in polynomial time. Simulation has also been extended in two orthogonal directions, namely, (1) fair simulation, for simula...

متن کامل

Mean-Payoff Games on Timed Automata

Mean-payoff games on timed automata are played on the infinite weighted graph of configurations of priced timed automata between two players—Player Min and Player Max—by moving a token along the states of the graph to form an infinite run. The goal of Player Min is to minimize the limit average weight of the run, while the goal of the Player Max is the opposite. Brenguier, Cassez, and Raskin re...

متن کامل

On Fixed-Parameter Complexity of Infinite Games

We investigate and classify fixed parameter complexity of several infinite duration games, including Rabin, Streett, Muller, parity, mean payoff, and simple stochastic, using different natural parameterizations. Most known fixed parameter intractable games are PSPACEor EXP-complete classically, AW [∗] or XP-hard parametrically, and are all finite duration games. In contrast, the games we consid...

متن کامل

The Complexity of Multi-Mean-Payoff and Multi-Energy Games

In mean-payoff games, the objective of the protagonist is to ensure that the limit average of an infinite sequence of numeric weights is nonnegative. In energy games, the objective is to ensure that the running sum of weights is always nonnegative. Multi-mean-payoff and multi-energy games replace individual weights by tuples, and the limit average (resp., running sum) of each coordinate must be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012